ERRATA: Airplane Design Part VI

Copyright © 2004 by Dr. Jan Roskam Year of Print, 2004 (Errata Revised August 9, 2022)

Please check the website www.darcorp.com for updated errata

page 28, Line 3	Should read	$\varepsilon_t = \text{wing tw}$	ist angle in r	adians, positive for
-----------------	-------------	----------------------------------	----------------	----------------------

wash-in ...'

page 200, Figure 6.38 Vertical axis units should be in 1,000 lb

page 205, Line 9 Should read

$$(SHP_{av}\eta_{inl/inc} - P_{extr})$$
 275 239 198 165 133

page 212, Figure 7.5 Vertical axis units should be in 1,000 lb

page 229, Equation (8.7) Should read:

$$\Delta c_{l} = \eta_{1} \left(c_{l \delta_{f_{1}}} \right) \left(\delta_{f_{1}} \right) \left\{ \frac{\left(c + c_{1} \right)}{c} \right\} + \eta_{2} \left(c_{l \delta_{f_{2}}} \right) \left(\delta_{f_{1}} + \delta_{f_{2}} \right) \left(\frac{c'}{c} \right)$$

page 236 Figure 8.26 Vertical axis values should be negative

page 239, Equation (8.19) Should read:
$$\Delta c_{l_{\text{max}}} = \left(c_{l_{\delta_{\text{max}}}}\right) \eta_{\text{max}} \delta_f \eta_{\delta} \left(\frac{c'}{c}\right)$$

page 259, Line 9 Should read '... leading edge flaps at
$$\alpha = 0$$
 may be estimated from:'

page 269, Equation (8.37) Should read:

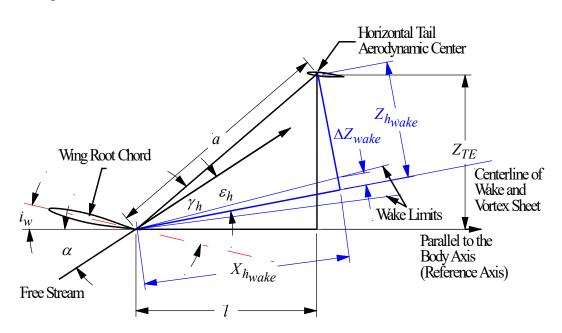
$$\eta_h = 1 - \left[\left\{ \cos^2 \left(\frac{\pi z_{h_{wake}}}{2 \Delta z_{wake}} \right) \right\} \left\{ 2.42 \sqrt{C_{D_{O_w}}} \right\} / \frac{x_{h_{wake}}}{\overline{c}} + 0.30 \right]$$

page 269, Line 23 Should read

'where:
$$z_{h_{wake}} = a \sin(\gamma_h - \alpha - i_w + \varepsilon_h)$$
 (8.38a)

$$x_{h_{wake}} = a\cos(\gamma_h - \alpha - i_w + \varepsilon_h)$$
 (8.38b)

with a, γ_h , ε_h , i_w and α shown in Fig. 8.63.'


page 269, Equation (8.39)

Should read:
$$\varepsilon_h = \varepsilon_{h_o} + \left(\frac{d\varepsilon_h}{d\alpha}\right)_{p. off} \alpha$$

$$\Delta z_{wake} = 0.68\overline{c} \sqrt{C_{D_{O_W}} \left(\frac{x_{h_{wake}}}{\overline{c}} + 0.15\right)}$$

page 270, Figure 8.63

Should be

'
$$K_H$$
'should be ' K_h '

$$(\frac{2h_H}{h})$$
, should be $(\frac{2h_h}{h})$,

$$\frac{2l_H}{b}$$
 should be $\frac{2l_h}{b}$,

$$K_{H} = \frac{1 - \frac{h_{H}}{b}}{\sqrt[3]{\frac{2l_{H}}{b}}}, \text{ should be } K_{h} = \frac{1 - \left|\frac{h_{h}}{b}\right|}{\sqrt[3]{\frac{2l_{h}}{b}}},$$

page 357, Table 9.1	Third row, second column '0.8' should be '-0.8'
page 390, Figure 10.16	' z_h = vertical distance' should be ' z_h = vertical distance between the horizontal tail aerodynamic center to the fuselage center line'
page 398, Equation (10.44)	Should read: $C_{nT_{\beta}} = -\sum_{i=1}^{i=n} \left[\frac{\left\{ \left(\frac{dC_N}{d\alpha} \right)_{p_i} \left(\frac{\pi}{4} \right) \left(D_{p_i} \right)^2 \left(l_{p_i} \right) \right\}}{Sb} \right]$
page 400, Equation (10.45)	Should read: $C_{nT\beta} = -\frac{\sum_{i=1}^{i=n} \frac{0.035m_{a_i}l_{n_i}}{Sb\rho U_1}$
page 401, Line 19	Should read 'where: $\sigma_{\beta_{\alpha}}$ is the sidewash contribution due to angle of attack, in \deg^{-1} . It is found from Figures 10.30.'
page 401, Line 21	Should read ' α_f is the angle of attack of the fuselage, in deg .'
page 401, Line 22	Should read ' $\sigma_{\beta_{\Gamma}}$ is the sidewash contribution due to wing dihedral, in \deg^{-1} . It is found from Figures 10.31.'
page 401, Line 24	Should read ' Γ is the wing dihedral angle, in deg , as defined in Figure 10.7.'
page 401, Line 26	Should read ' $\sigma_{eta_{\mathcal{E}_t}}$ is the sidewash contribution due to
	wing twist, in deg ⁻¹ , as obtained from Figures 10.32.'
page 401, Line 28	Should read ' ε_t is the wing twist angle, in deg , as shown in Figure 10.26.'
page 430, Figure 10.42	Vertical axis values should be divided by -4

Should read:
$$C_{D_{i_h}} = \frac{2C_{L_o}}{\pi Ae} C_{L_{\alpha_h}} \eta_h \frac{S_h}{S}$$

page 435, Line 36

Should read 'where: C_{L_o} is the airplane zero-angle-of-attack lift coefficient follows from Eqn. (10.90).'

page 436, Equation (10.90)

Should read:

$$\begin{split} C_{L_o} &= C_{L_{o_{wf}}} + C_{L_{\alpha_h}} \eta_h (S_h/S) \Big(-\alpha_{o_{L_h}} - \varepsilon_{o_h} \Big) + \\ &+ C_{L_{\alpha_c}} \eta_c (S_c/S) \Big(-\alpha_{o_{L_c}} - \varepsilon_{o_c} \Big) \end{split}$$

page 436, Line 3-7

Remove Line 3-7

Should read:
$$C_{D_{i_c}} = \frac{2C_{L_o}}{\pi Ae} C_{L_{\alpha_c}} \eta_c \frac{S_c}{S}$$

page 439, Line 5

Should read 'where: C_{L_0} is the airplane zero-angle-of-attack lift coefficient follows from Eqn. (10.98).'

page 439, Equation (10.98)

Should read:

$$\begin{split} C_{L_o} &= C_{L_{o_{wf}}} + C_{L_{\alpha_h}} \eta_h (S_h/S) \Big(-\alpha_{o_{L_h}} - \varepsilon_{o_h} \Big) + \\ &+ C_{L_{\alpha_c}} \eta_c (S_c/S) \Big(-\alpha_{o_{L_c}} - \varepsilon_{o_c} \Big) \end{split}$$

page 439, Line 8-12

Remove Line 8-12

page 461, Line 10

Following Line 10, should read 'For single vertical tail:

$$C_{y_{\mathcal{S}_{r}}} = K_{b}C_{L_{\alpha_{v}}} \frac{S_{v}}{S} \left\{ \frac{c_{l_{\mathcal{S}}}}{\left(c_{l_{\mathcal{S}}}\right)_{theory}} \left\{ \left(c_{l_{\mathcal{S}}}\right)_{theory} \left(\frac{k'}{c_{l_{\alpha_{v}}}}\right) \left\{ \frac{(\alpha_{\mathcal{S}})_{C_{L}}}{(\alpha_{\mathcal{S}})_{c_{l}}} \right\} \eta_{v} \right\} \right\}$$
(10.123a)

page 461, Line 19

Following Line 19, should read 'For twin vertical tail:

$$C_{y\delta_{r}} = 2 \left(\frac{C_{y\beta_{v(wfh)}}}{C_{y\beta_{veff}}} \right) K_{b}C_{L\alpha_{v}} \frac{S_{v}}{S} \left\{ \frac{c_{l_{\delta}}}{\left(c_{l_{\delta}}\right)_{theory}} \left\{ \left(c_{l_{\delta}}\right)_{theory} \left(\frac{k'}{c_{l_{\alpha_{v}}}}\right) \left\{ \left(\alpha_{\delta}\right)_{c_{l}} \right\} \eta_{v} (10.123b) \right\} \right\}$$

Where:
$$\left(\frac{C_{y\beta_{v(wfh)}}}{C_{y\beta_{veff}}}\right)$$
 is found from Figure 10.17'