ERRATA: Airplane Design Part VI

Copyright © 2008 by Dr. Jan Roskam
Year of Print, 2008
(Errata Revised June 19, 2018)

Please check the website www.darcorp.com for updated errata

page 200, Figure 6.38
Vertical axis units should be in 1,000 lb

page 205, Line 9
Should read

\[
\begin{align*}
SHP_{av} & \quad 285 \quad 248 \quad 206 \quad 172 \quad 140 \\
(SHP_{av}\eta_{inl/inc} - P_{extr}) & \quad 275 \quad 239 \quad 198 \quad 165 \quad 133 \\
P_{av} & \quad 242 \quad 210 \quad 174 \quad 145 \quad 117
\end{align*}
\]

page 212, Figure 7.5
Vertical axis units should be in 1,000 lb

page 229, Equation (8.7)
Should read:

\[
\Delta c_l = \eta \left(\frac{c_l\delta_{f_1}}{c}\right)\left(\delta_{f_1}\right)\left(\frac{c + c_1}{c}\right) + \eta_2 \left(\frac{c_l\delta_{f_2}}{c}\right)\left(\delta_{f_1} + \delta_{f_2}\right)\left(\frac{c'}{c}\right)
\]

page 236 Figure 8.26
Vertical axis values should be negative

page 239, Equation (8.19)
Should read: \[\Delta c_{l,\text{max}} = \left(\frac{c_l\delta_{\text{max}}}{c}\right)\eta_{\text{max}}\delta_f\eta_\delta\left(\frac{c'}{c}\right) \]

page 259, Line 9
Should read ‘… leading edge flaps at \(\alpha = 0\) may be estimated from:

page 269, Equation (8.37)
Should read:

\[
\eta_h = 1 - \left\{\cos^2\left(\frac{\pi z_{h,\text{wake}}}{2\Delta z_{\text{wake}}}
ight)\left\{2.42\sqrt{C_{D_{o,w}}} \right\}\frac{x_{h,\text{wake}}}{c} + 0.30\right\}
\]

page 269, Line 23
Should read

\[
\begin{align*}
\text{where: } z_{h,\text{wake}} &= a \sin\left(\gamma_h - \alpha - i_w + \varepsilon_h\right) \quad (8.38a) \\
x_{h,\text{wake}} &= a \cos\left(\gamma_h - \alpha - i_w + \varepsilon_h\right) \quad (8.38b)
\end{align*}
\]
with \(\alpha, \gamma_h, \varepsilon_h, i_w \) and \(\alpha \) shown in Fig. 8.63.

Page 269, Equation (8.39)

Should read:
\[
\varepsilon_h = \varepsilon_{h,0} + \left(\frac{d\varepsilon_h}{d\alpha} \right)_{p, \text{off}} \alpha
\]

Page 269, Equation (8.40)

\[
\Delta z_{\text{wake}} = 0.68c \sqrt{C_{D\omega} \left(\frac{x_{h\text{wake}}}{c} + 0.15 \right)}
\]

Page 270, Figure 8.63

Should be

Page 273, Figure 8.65c

‘\(K_H \)’ should be ‘\(K_h \)’

Page 273, Figure 8.65c

‘\(\frac{2h_H}{b} \)’ should be ‘\(\frac{2h_h}{b} \)’

Page 273, Figure 8.65c

‘\(\frac{2l_H}{b} \)’ should be ‘\(\frac{2l_h}{b} \)’

Page 273, Figure 8.65c

‘\(K_H = 1 - \frac{h_H}{b} \sqrt{\frac{2l_H}{b}} \)’ should be ‘\(K_h = 1 - \frac{h_h}{b} \sqrt{\frac{2l_h}{b}} \)’

Page 390, Figure 10.16

‘\(z_h = \) vertical distance…’ should be ‘\(z_h = \) vertical distance’
between the horizontal tail aerodynamic center to the fuselage center line’

page 398, Equation (10.44)
Should read:

\[C_{\eta T_\beta} = -\sum_{i=1}^{i=n} \left[\left(\frac{dC_N}{d\alpha} \right)_{p_i} \left(\frac{\pi}{4} \right) \left(D_{p_i} \right)^2 \left(l_{p_i} \right) \right] \]

page 401, Line 19
Should read ‘where: \(\sigma_{\beta\alpha} \) is the sidewash contribution due to angle of attack, in \(\text{deg}^{-1} \). It is found from Figures 10.30.’

page 401, Line 21
Should read ‘\(\alpha_f \) is the angle of attack of the fuselage, in \(\text{deg} \).’

page 401, Line 22
Should read ‘\(\sigma_{\beta\Gamma} \) is the sidewash contribution due to wing dihedral, in \(\text{deg}^{-1} \). It is found from Figures 10.31.’

page 401, Line 24
Should read ‘\(\Gamma \) is the wing dihedral angle, in \(\text{deg} \), as defined in Figure 10.7.’

page 401, Line 26
Should read ‘\(\sigma_{\beta\varepsilon_l} \) is the sidewash contribution due to wing twist, in \(\text{deg}^{-1} \), as obtained from Figures 10.32.’

page 401, Line 28
Should read ‘\(\varepsilon_l \) is the wing twist angle, in \(\text{deg} \), as shown in Figure 10.26.’

page 435, Equation (10.89)
Should read: \(C_{D_{ih}} = \frac{2C_{L_{a}}}{\pi A e} C_{L_{a}h} \eta_l \frac{S_h}{S} \)

page 435, Line 36
Should read ‘where: \(C_{L_{a}} \) is the airplane zero-angle-of-attack lift coefficient follows from Eqn. (10.90).’

page 436, Equation (10.90)
Should read:
\[
C_{L_o} = C_{L_{\text{wf}}} + C_{L_{\alpha h}} \eta_h \left(\frac{S_h}{S} \right) \left(-\alpha_{Lh} - \epsilon_{oh} \right) + \\
+ C_{L_{\alpha c}} \eta_c \left(\frac{S_c}{S} \right) \left(-\alpha_{LC} - \epsilon_{oc} \right)
\]

page 436, Line 3-7
Remove Line 3-7

page 439, Equation (10.97)
Should read:
\[
C_{D_{ic}} = \frac{2C_{L_o}}{\pi A e} C_{L_{\alpha c}} \eta_c \frac{S_c}{S}
\]

page 439, Line 5
Should read ‘where: \(C_{L_o} \) is the airplane zero-angle-of-attack lift coefficient follows from Eqn. (10.98).’

page 439, Equation (10.98)
Should read:
\[
C_{L_o} = C_{L_{\text{wf}}} + C_{L_{\alpha h}} \eta_h \left(\frac{S_h}{S} \right) \left(-\alpha_{Lh} - \epsilon_{oh} \right) + \\
+ C_{L_{\alpha c}} \eta_c \left(\frac{S_c}{S} \right) \left(-\alpha_{LC} - \epsilon_{oc} \right)
\]

page 439, Line 8-12
Remove Line 8-12